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This work determines analytically the drag on, and heat flux out of, a hot sphere that 
translates steadily in a fluid of strongly temperature-dependent viscosity. There is 
no dissipative heating. The essentials are illustrated by an exact solution for the flow 
induced by slowly squeezing two parallel planes together. The lower plane is hot and 
stationary; the upper is cold and advances in a direction normal to itself at uniform 
speed U .  The gap is completely filled by a fluid of strongly temperature-dependent 
viscosity. We find the temperature and velocity profiles, and determine the Nusselt 
number N and P k l e t  number P a s  functions of the normal force D on the lower plane. 
The large viscosity variation tries to concentrate the flow into a relatively thin 
softened layer in which the viscosity is of order its value ,u0 a t  the hot plane. I n  the 
limit of infinite viscosity ratio (fixed P ) ,  it succeeds (lubrication limit) : if P 6 1, the 
width of the softened layer is determined by conduction and D cc ,uo U ;  but D a ,uo U4 
when forced convection is important. If I' + 00 (fixed viscosity ratio), the softened 
layer is so thin that i t  chokes, and all the deformation occurs outside the thermal 
layer in the fluid of uniform viscosity ,urn (Stokes limit); then D K ,urn CT. These 
mechanisms appear as three distinct legs in our plot of log P against log D. There are 
similar transitions in the plot of log N against log D. The solution gives an estimate 
of the drag on a sphere. We test this estimate against an analytical solution for the 
sphere in the lubrication limit. Then we extend the solution to  cover power-law fluids, 
and apply it to a model (by Marsh) of magma transport beneath island-arc volcanoes. 
The results suggest that the magma covers the first 50 km of its ascent by an 
isoviscous mechanism, with the lubrication mechanism operating in the remaining 
50 km. To open a fresh pathway from the source to the surface takes about lo6 years 
and uses about loz7 erg. 

1. Introduction 
A number of geophysical flows are very strongly influenced by the extreme 

sensitivity of the viscosity to temperature changes. The Prandtl number of the fluid 
is effectively infinite in all these cases. In  this, and in some papers to follow, we shall 
exploit this strong dependence on temperature to give analytical solutions to some 
model problems that illustrate the essential features of these variable-viscosity flows. 

In  this paper we determine the steady creeping flow of an incompressible fluid past 
a stationary hot sphere of radius a and constant temperature To. Far from the sphere 
the flow is uniform, with prescribed velocity and temperature T,. We suppose the 
temperature field to be solely the result of a balance between the conduction of heat 
away from the sphere and the forced convection of cold fluid towards it. Because the 
viscosity depends on temperature, the momentum and energy equations must be 
solved simultaneously. Except in the conduction limit, the problem is thus nonlinear, 
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and the point of the asymptotic method is that ,  when the viscosity depends very 
strongly on temperature, the momentum and energy equations can be solved 
sequentially. This allows an analytical solution to be found. 

This problem is the analogue for a variable-viscosity fluid of Stokes's problem. We 
shall use the drag law for the sphere to find the terminal speed of a sphere that is 
lighter than the surrounding fluid because of an imposed density difference. The 
problem was originally posed by Marsh (1978) as a model of magma transport beneath 
island-arc volcanoes. Magma is generated about 100 km down. Petrologists face t>he 
difficulty t'hat the Earth's lithosphere is so stiff t'hat, t'o reach the surface, a sphere 
of radius 1 km (say) following Stokes's law would need a time comparable to the 
Earth's age. Marsh recognized that, because the magma is hotter than its surroundings 
for most of its ascent, it will lower bhe viscosity of the fluid near it and rise more 
quickly than Stokes's law would allow. 

It turns out that  the variable-viscosity flow transfers heat very effectively. A sphcrc 
rising with only its primal heat cools to the temperature of its surroundings once it 
has travelled through one or two of its own diameters. For the softening mechanism 
to work, either successive magmas must use the same pathway, or else there must 
be a trailing stalk which feeds fresh, hot magma to the sphere. The rapid heat loss 
is a nuisance for an individual parcel; but it is essential for the process as a whole, 
which relies on pumping heat, from the source region into the cold country rock just 
ahead of the advancing hot. front, of the diapir. 

Once a pathway has been opened, there will be little difficulty in getting magma 
to the Earth's surface. Thus we shall estimate the time taken to open a fresh pathway 
through virgin rock by using the results for the steady motion of a sphere a t  constant 
temperahre T,. We do not treat the problem of maintaining the temperature To. 

This response time for the island arc is geologically constrained. At any given 
oceanic trench, subduction has been going on for a certain time. For there to be the 
observed association between present subduction zones and active island-arc 
volcanoes, the response time must be less than the age of the youngest subduction 
zone that has volcanoes associated with it. Using this approach, Marsh (1983) has 
estimated the response time to be less than about 1 x lo6 years. Given enough hot 
magma, ascent by softening meets this constraint. 

In  $2 we describe the two essential qualitative features of the flow past a hob sphere. 
These features are predicted by an  asymptotic theory for a fluid with a viscosity 
profile v(T) = A e-yT and y(T,-T,) -P 00. It is reasonable to expect them to appear 
in the actual geophysical flow only if the condition t = ?(To - T,) 9 1 is met. We shall 
see that the asymptotic theory is qualitatively valid if t > 10. This condition is met 
in the geophysical flow. For example figure 1 shows the viscosit'y of olivine a t  zero 
pressure. It was calculated using an activation energy of 522 k J  mol-l (Ashby & 
Verrall 1978). The viscosity profile is actually of the form ,u = ,u*exp ( C I T ) ,  where 
C = 6-38 x lo4 K. Near 1500 Ii, for example, this profile can be approximated by the 
form 1' = Ae-YT (7-l = 35.8 K )  over a range of about 400 K. This means that t > 10 
if T,-T, > 360 K.  This condition is met whenever the softening mechanism is 
important (see $5). 

We shall concentrate on the geophysical applications of this study, but there are 
a t  least two other applications. The squeezing flow between parallel planes, which 
we discuss in $3, has immediate applications to the moulding of polymers (see e.g. 
Lee et al. 1982). The problem of the sphere may also have an application to pathology : 
the pathologist Florey showed that mucus act's as a mechanical barrier to hinder 
bacterial invasion of the body. It is an effective barrier because mucus is very viscous, 



Slow jlow past a hot sphere 3 

1'" 
Absolute temperature (K) 

FIGURE 1. Viscosity of olivine at zero pressure as a function of absolute temperature (K). Data from 
Ashby & Verrall (1978). Activation energy 522 kJ mol-', pref = 2.67 kg m-' 5-l at 1000 K. 

but bact,eria secrete an enzyme that lowers its viscosity. This is simply the chemical 
version of the problem studied here. The pathology is briefly described by Macfarlane 
(1979, p. 278). 

Finally, it  is worth noting that a similar asymptotic method has been used to study 
both channel flows for polymer processing, and also combustion problems in which 
the rate of energy release depends strongly upon temperature. See Ockenden & 
Ockenden (1977) and Pearson (1977) for examples of the first problem, and Clavin 
& Williams (1979) for an example of the second. 

2. Qualitative aspects of the flow 
When the viscosity of the fluid depends strongly upon temperature, two essential 

features emerge: first, the essential viscosity variations occur over a distance 1 much 
shorter than the lengthscale 6 of the temperature field; secondly, there is an 
interaction between the large viscosity contrast and the size of the system, which 
means that even flows with a large viscosity contrast can, in the right circumstances, 
show qualitatively isoviscous behaviour. 

To see why the first of these features occurs, consider the case v(T) = A e-yT  ; the 
temperature of the sphere is T,, the temperature of the undisturbed fluid is Tm, and 
AT = T,-T,. Let vo = v(T0)  and t = yAT. Then 

To-T 
v = vo exp t (7) 

and it follows that, as t --f 00, v /vo  + co exponentially, except in the region in which 
To-T = O(y-l) .  Now the temperature field set up by the hot sphere will have the 
qualitative form shown in figure 2. Since y-l @ AT, the layer in which v / v o  = O(1) 
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FIGURE 2.  Schematic showing the temperature field outside the hot sphere 

is much thinner than the thermal boundary layer. The thickness 1 of this deformation 
layer can easily be estimated. For since the temperature difference across i t  is order 
y-l, the temperature gradient within i t  is of order y-l/l.  But since I is small compared 
with the thickness 6 of the thermal boundary layer, the temperature gradient within 
the deformation layer is comparable to  its value AT/& outside the layer. Hence 611 z t ,  
so that 611 + 00 as t 

It is important to recognize that I is the distance needed for the viscosity to increase 
by a factor e over its value a t  the surface of the sphere. I n  fact 

co. 

From the definition of this layer, i t  follows that outside it v / v o  --f 00 exponentially 
as t -P 00. This means that the ratio v /v0  must also increase exponentially with 
distance across the deformation layer in order to match to this large external value; 
this exponential increase occurs over the lengthscale 1. By itself this exponential 
increase in viscosity will confine the shear to  the deformation layer. As we shall now 
see, substantial velocity differences can appear outside the soft layer only if the region 
across which they occur is so large that the lengthscale of the flow can compensate 
for the very large viscosity. This will mean that substantial velocity differences can 
occur outside the deformation layer only for very large spheres, and only in the 
isoviscous part of the flow. 

The strong temperature dependence of the viscosity thus separates the velocity field 
into two different parts : the first is the flow in the very narrow but relatively inviscid 
deformation layer; the second is the isoviscous flow, which occurs outside the thermal 
boundary layer in the very viscous fluid. The lengthscale of the second flow is of order 
of the radius a of the sphere. 

The second essential feature of these variable-viscosity flows is that under some 
circumstances the isoviscous flow can be more important than the flow in the softened 
layer. When that is so, the drag on the sphere is given in order of magnitude by Stokes's 
law. 

To see how this can occur, not that for the sphere to advance through one of its 
own radii a ,  i t  must push behind i t  a volume na3 of fluid. Let all the parameters that 
describe the flow be fixed, except the viscosity v0 in the softened layer. Then, if v0/vm 
is made small enough, the pressure needed to  drive the volume 77a3 of fluid through 
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FIGURE 3. Notation for the scaling analysis. 

the very narrow softened layer will be much less than that needed to deform the very 
viscous surrounding fluid. Almost all the shear will then be confined to the width 1 
of the thin softened layer, and the streamlines will look very much like those in the 
corresponding melting problem. 

Suppose now that the ratio v o / v ,  is fixed at this small value, and the ratio a l l  is 
increased by increasing the PBclet number UalK. Then, because the deformation layer 
becomes very narrow, the pressure drop needed to  drive the volume nu3 through the 
thin layer becomes so large that i t  starts to  deform even the most viscous fluid. 
Increasing all  beyond this value will result in the volume nu3 passing the sphere in 
the isoviscous region, rather than through the deformation layer. For these very large 
values of al l ,  both the drag on, and the heat flux out of, the sphere will be essentially 
that for an isoviscous flow. 

Clearly, we need a method to determine which strategy a given sphere will follow. 
The following two-layer model tells us the dimensionless parameter that  determines 
this. Figure 3 shows the notation. 

Let (ur, uo) = (w, u). Since the ‘disturbance due to the sphere extends over a 
distance of order a ,  conservation of mass requires that 

Since the deformation layer is thin, the pressure gradient in i t  is of the same order 
as the pressure gradient in the external flow. Also, if the tangential velocity is much 
greater in the deformation layer than i t  is outside, then aular w uo/Z within the 
deformation layer. Conservation of momentum thus requires that 

Together these equations determine uo and ul. Let 
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where N is the Nusselt number and .c = t 3 (v0 /vW) .  Then 

(3.4) 

(2 .5 )  

The drag on the sphere is of order ( p  -p,) 7ra2, where p ,  is the pressure on the 
equator. From the second equality in ( 2 . 2 )  i t  follows that the drag 

(2.6) 

There are clearly two limiting cases. If A $ 1 ,  

D x D, = ,umal.T, 

so that the drag is given by Stokes's law in orde,r of magnitude; but, if A < 1,  

Note that in the second case the drag increases as I decreases; i t  is also independent 

Thus there are two mechanisms by which the sphere can move through the fluid. 
The parameter A is simply the ratio Do/D, ,  and the scaling argument shows that 
for a given value of A the sphere picks the strategy with the smaller drag. This useful 
conclusion is carefully qualified in $3.3. 

The t,hickness 1 is determined by the energy equation, and, like the drag, the heat 
transfer can either be dominated by the flow in thc dcformation layer, or else by the 
isoviscous flow. To see the essential point, note that (2 .5)  shows that the jump in 
normal velocity across the deformation layer is of order U if A + 1 ,  but that it 
vanishes for A $ 1 .  I n  the first case the isoviscous flow sees the surface of the sphere 
as porous, with a suction velocity of order U ,  and the heat transfer is very efficient. 
If on the other hand A $ 1 ,  the isoviscous flow satisfies the boundary condition on 
the normal velociby. But even if the surface of t'he sphere is rigid there is always a 
range of values of A for which the isoviscous flow sees the surface as stress-free. We 
shall see that for a solid sphere this means that there are t'hree essential knees in the 
heat-transfer curve. 

Perhaps it will be useful to explain here why the body of this paper discusses 
squeezing flow between parallel planes. Recall that' thc simple exact solution for the 
Stokes problem is possible only because the flow is highly symmet'ric; the derivation 
in Batchelor (1967) makes this explicit. For the variable-viscosity problem there is 
no fore-and-aft symmetry in general and there is no simple exact solution valid for 
all A. For this work I needed a model flow with two properties. First it  had to be 
sufficiently simple for there to be an exact solution for all A ;  this solution had to show 
the same qualitative behaviour as that  for the sphere. Secondly, the solution had to 
give a reasonably accurate estimate of the drag on the sphere in the most interesting 
case A -+ 0. Squeezing now between parallel planes meets both criteria. 

of P m .  
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3. Squeezing flow between parallel planes for arbitrary A and UalK 
This is the analogue for a variable-viscosity fluid of the classic problem due to 

Reynolds; for that  problem see Batchelor (1967, p. 228). To solve the problem we 
first use the fact that 116 + 0 to show that the temperature varies linearly across the 
deformation layer. This lets us write down the viscosity in terms of 6. We can then 
solve the momentum equation, but, because the solution contains the unknown 
quantity 6, the resulting drag law (3.20) gives the dimensionless drag in terms of the 
Nusselt number N .  We then solve the energy equation to  obtain the relationship 
between the Nusselt number N and the PBclet number P. 

Figure 4 shows the geometry of the flow. Let u and uj be respectively the radial 
and axial components of the velocity. The boundary conditions are that 

t o =  -131, u = 0 ,  T = T ,  on z = a ,  

and that w = O ,  T = T o  on z = 0 .  

Also, either u,=O or u = 0  on z = O .  

We shall not specify whether the plane z = 0 is rigid or traction-free until we discuss 
the drag in $3.2.5; from there on a general formulation is still easy, but it becomes 
unreadable. We discuss the solution in detail for the traction-free case u,(x, 0) = 0, 
and merely state the results for the rigid case u ( x ,  0) = 0 in $3.4. 

3.1. Gonerning equations 

Let (u, w) = ( i r f ’ ( z ) ,  - f ( z ) ) .  Then the equation of continuity is satisfied identically, 
and the exact momentum equations are 

y 2  -ff = c, I + [l,(?’)f”]’, (3.1) 

1 
ff’ = - -p  -f‘-21’, f ’ .  

P Z  

;Gor. 
1 
-P = -- 
P 

Here Go is constant and 

Now let T = T ( z ) .  Then the exact energy equation is 

- f T =  K T .  

(3.2) 

(3.3) 

(3.4) 
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Finally, we shall consider the case in which 

although the main conclusions will not depend on the choice (3.5) if separation of 
scales holds. 

From the discussion of the energy equation in $2, i t  follows that, when external 
deformation is negligible, the thickness of the thermal boundary layer is of order K /  U. 
Therefore we use the dimensionless variables 

On ignoring inertial forces, (3.1), (3.4) and (3.5) become 

0 = Go+ [C,]’, 
0 =fP++, 
v“= expt(1-T). 

Here we have put 
K3 G - -Go,  t=yAT.  

O - Y o  u4 

These equations are to be solved subject to the conditions f ( P )  = 1, f’(P) = 0, 
f(0) = 0, p(0) = 1 ,  p(P)  = 0, and either f‘(0) or T”(0) = 0. Here the dimensionless 
distance P = Ua/K is the Phclet number based on the separation a of the plates. It 
will be helpful later to  notice here that 

(3.9) 

Finally we let 
(3.10) YO 

v ,  
A = eN3, where e = t3-. 

We may now drop the tildes on dimensionless quantities. 

3.2. The momentum equation 

3.2.1. The deformation layer. I n  $2 we saw that there is a layer near z = 0 in which 
v /vo  = O( 1) as t -+ co. We now show that within i t  the viscosity increases exponentially 
with x .  From (3.7) it follows that the Taylor expansion of T about z = 0 is 

T = l + ~ T ~ ( l + & ~ w ~ + O ( z ~ ) ) .  (3.11) 

Now the velocity gradient IwJ will be largest when the fluid outside the deformation 
layer is essentially undeformed, and in that case the estimate (2.5) for the jump in 
normal velocity shows that IwJ = O(t). It follows from (3.11) that, if z = O(t-1) as 
t +co, then T decreases linearly with z .  This justifies the statement that the 
temperature gradient is uniform across the deformation layer. Thus 

Y = exp tlThI z .  

The parameter IT,$ is as yet unknown; i t  will be determined only when the energy 
equation has been solved. 

Now let 
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Then if t -, 00 the momentum equation (3.6) becomes within the deformation layer 

o = 1 + leSf"1'. (3.12) 

which is to be integrated subject to the condition 0 = f ( O ) ,  together with the condition 
that the solution match to the velocity field within the adjustment layer. Hence 

f(<) = (f';+f,"-1)<+(2-f;) ( ~ - e - " - < e - C .  (3.13) 

3.2.2. The isoziiscous $oui. Since we expect the isoviscous flow to scale on the 
separation P of the plates, let Z = z fP  and let f = e-tG, P3 F(Z) .  Then (3.6) reduces 

o =  l + P .  to 

Here F'(1) = 0 and F ( l )  = e tG; 'F3 .  Hence 

F ( Z )  = F,+(+-F;)z+~F;z~--Lz~ 6 9  (3.14) 

where F, = F(l)++P,"-$. (3.15) 

3.2.3. The adjustment layer. Since 1' = exp t(1 -T )  it follows that the viscosity 
returns to its value et in the undisturbed fluid only when T = O(t-'). From figure 2 
it  is clear that  the distance A over which this occurs is far greater than 1. This means 
that there is no region of overlap between the deformation layer and the isoviscous 
flow. Thus i t  will be possible to match the two solutions only if the tangential velocity 
is independent of z in this 'adjustment' layer. This is the case. 

The essential point is that the pressure gradient is the same for each of the three 
layers. A given layer can therefore support a substantial change in velocity across 
it either if the layer is very thick, or if its viscosity is very small. The isoviscous flow 
can support a substantial shear for the first reason, and the deformation layer for 
the second; but the viscosity in the adjustment layer is a t  least of order exp ti relative 
to  the viscosity in the deformation layer, whilst the ratio A/1 depends only on some 
power of t .  The two effects together ensure that the tangential velocity is uniform 
across the adjustment layer, provided that t is large enough. This argument is easily 
formalized. 

We also want to know how big t should be in practice for the adjustment layer 
to be negligible. The practical way to determine this is by iteration (see 93.3). 

3.2.4. Matchiizg. Since the tangential velocity is uniform across the adjustment 
layer we can match the isoviscous flow directly to that in the deformation layer. In  
a two-layer model of this flow the normal and tangential velocities, as well as the 
shear stress, would have t o  be continuous a t  the interface. Here the viscosity varies 
continuously with z, and the corresponding matching condition is that both the 
constant and linear terms, as well as the shear stress, in (3.13) must match the 
corresponding terms in (3.14). Carrying this out in the usual way gives 

(3.16n) 

(3.166) 

( 3 . 1 6 ~ )  
O -  N t '  

These are three equations in four unknowns, f ; ,  f,", F,  and F,". Given one more 
boundary Condition o n f a t  =. = 0, the other three quantities follow. We now consider 
the stress-free casef; = 0. 

F" - - f," 
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3.2.5. The ca$ef,," = 0. From (3.15) and (3.16) it follows that the pressure gradient 
Go satisfies 

(3.17) 

Moreover, the composite expansion for f is 

f - (3.18) 

= t 3 ( v o / v m ) .  Note 
t-02 

Here we have used the fact that N = PIThI and the definition 
that, if eN3 @ 1 ,  the stream function reduces to 

f- i - ( i + + c ) e - c ,  

and the shear is confined to a narrow layer of thickness aN-lt-l. If on the other hand 
€N3 + 1 ,  

and the shear fills the fluid. Figure 5 shows the tangential velocity profile for these 
two extremes. 

3.2.6. The drag law. The stream of fluid exerts a force on the surface z = 0 which 
is equal to the surface integral of the normal stress. To calculate the total normal 
force we suppose that the flow has radial extent R ;  later we shall identify R with 
the radius a of a sphere. The contribution made by the normal viscous stresses is 
(1/R)2 times that of the pressure, and it can be ignored. 

In  $4 we shall find that when a sphere moves by softening its surroundings, the 
pressure is an order of magnitude less a t  the equator than i t  is a t  the forward 
stagnation point. Thus we suppose that p vanishes at r = R. 

On using (3.3) and (3.16) to  find the pressure, i t  follows that the (dimensional) 
normal force acting on a disk of radius R is 

f- i(3Z--Z3), 

(3.19) 

Define the dimensionless drag D bv " 

D'=% 16 PO K (3' - t3D. 

Then the drag law is PN3 = D(1 +&V). (3.20) 

Here the Pkclet number P = U a / K ,  and the Nusselt number N is defined in (3.9). 
Equation (3.20) closely resembles equation (2.6) of the scaling analysis. Given D, there 
are two unknowns, P and N. As we did in the scaling analysis, here too we shall obtain 
a second relationship between these unknowns from the energy equation. 

3.3. The energy equation 
Given the velocity profile (3.18), we can solve the energy equation to find both the 
temperature profile and the relationship between N and P. Even when P is arbitrary 
we need not use the full profile (3.18). To see this, first consider the case P % 1 so 
that the thermal- boundary-layer approximation ho1ds:Then within the thermal layer 

(3.21) 

within the thermal boundary layer; the first of the two terms is the jump in normal 
velocity across the deformation layer and the second reflects deformation within the 
external flow. 
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FIGURE 5.  Tangential velocity profile for the hot stagnation-point flow : 
(a )  Stokes limit; ( b )  lubrication limit. 

If, on the other hand, P is less than or of order unity then N is of order unity, and 
since & + 0 the appropriate form of (3.18) isf - 1 .  Equation (3.21) contains this case, 
and is thus the most general form off needed to solve the energy equation. 

The temperature profile is given by 

(3.22) 

where A = eN3. We discuss this later (see figure 8). Here the important point is that 
the quantity IT;/ = N / P  is fixed by the condition that T = 0 when z = P. This gives 
the relationship between N and P. Combining that result with the drag law (3.20) 
gives a useful relationship between N and D. It is 

(3.23) 

Figure 6 shows this N(D) relationship. If E is small enough, each curve has three 
distinct legs. Table 1 gives their analytical forms. To interpret them, first consider 
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FIGURE 6. Nusselt-numberdrag relationship for the hot stagnation-point flow. Dimensional 
drag D' = &?T,!+,K ( R / u ) ~  t3D. 

TABLE 1. Asymptotic forms for the case f = 0 (traction-free) 

the knee a t  D zz c2. In  that case table 1 shows that N zz d, and a thermal boundary 
layer is present. At the outer edge of this thermal layer 2 zz N-l ,  so that from (3.21) 
the normal velocity there is 1 + &N2 

(3.24) 

If eN2 9 1, this reduces to iiV1 : here the normal velocity a t  the outer edge of the 
thermal layer is independent of e, so that the heat transfer is not affected by the 
presence of the deformation layer. This is the right leg in figure 6. On the middle leg, 
eN2 < 1 and the thickness of the thermal layer is controlled by the jump in normal 
velocity across the deformation layer (see (3.21)). At the knee which joins these two 
legs, the coefficient of s2 in (3.23) (namely eN6/8D) is of order unity. Well to the 
left of the knee we can set this coefficient equal to zero and evaluate (3.23). The 

1+*€P' 
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FIGURE 7 .  PBclet-number-drag relationship for the hot stagnation-point flow. 

resulting analytical expression describes the left and middle legs in figure 6, together 
with the knee that joins them. This knee corresponds to the formation of a thermal 
boundary layer; well to the left of i t  N = 1, and to the right of it N 9 1 .  

At the right knee DNP3 x E-4 and is large when E is small. This means that, if E --+ 0, 
the right half of the graph can be generated by setting D W 3  = oc, in (3.23). The left 
half is generated by setting EN6/8D = 0 in (3.23). The values of E I considered were 
small enough for the two halves of the N ( D )  curve to match. But the same method, 
applied to the P(D)  curves in figure 7 ,  gives a visible mismatch for the largest values 
of E .  I n  the overlap region this corresponds to an error in P of about 5 yo. The parts 
of the curve with a visible mismatch are dashed. 

The important feature to  grasp in figure 6 is that fixing E and increasing N 
corresponds to  moving along one of the curves: for any fixed value of E ,  no matter 
how small, the heat transfer can always be made to resemble that in an isoviscous 
fluid by making N large enough. On the other hand, fixing N and decreasing E 

corresponds to moving across the diagram on a horizontal line: for any fixed value 
of N ,  no matter how large, the presence of the deformation layer controls the heat 
losses if e is small enough. 

It is also worth while to note that, if N ,  = E ~ N  and D ,  = s2D, then if DN-3 = co 
(3.23) has the form Nl = f l ( D l ) ;  experimental results for the N ( D )  relationship can 
be collapsed locally onto a single curve. 

Given N ( D )  and E ,  (3.20) determines P .  Figure 7 shows the PBclet-number-drag 
relationship. These curves also have three legs when E is small. Table 1 gives the drag 
law corresponding to  each leg. To interpret these results, remember that the drag is 
determined by the pressure. I n  turn, the pressure is fixed by the condition that the 
volume flux through the upper plane Z = 1 must equal that through the cylindrical 
control surface r = R. Thus the layer that  accepts the larger fraction of the volume 
flux also determines the drag. On using (2.5) it follows that the drag is controlled by 
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the deformation layer if A 4 1 and by the isoviscous flow if A % 1. Now consider 
figure 7 .  

Let c be made small and then fixed. Consider a series of experiments; in the first, 
the normal force D is very large but in the subsequent experiments it is steadily 
reduced. Initially the normal force is so large that the deformation layer is very thin; 
it, chokes, and all the volume flux is carried by t'he isoviscous fluid. &cause of this, 
U is independent of p,, and t ,  and it depends only linearly on t i .  Although it is of 
the same order of magnitude as the drag for the corresponding isoviscous problem, 
it is numerically less because the presence of the deformation layer means that) the 
normal viscous stress never contributes substantially t'o D. This is the Stokes limit. 

When D is reduced, t'he knee a t  D x e-8 is eventually reached. To the left of this 
knee, eN3 4 1 ,  and the deformat'ion layer is broad enough to carry the entire volume 
flux. It determines the relationship between U and IT. Equation (3.24) shows that 
the normal velocity a t  the outer edge of the thermal layer is of order unity, so that' 
the thickness 1 of the deformation layer is K l U t .  Since the pressure is of order 
p,, R2 IJ /13 ,  the drag is of order po R4 U/13. That' is 

po R4t3 U4 
D' X 

K3 

This depends strongly on CI and R ; increasing U makes the deformation layer thinner, 
and increasing R means that more volume flux passes through it. This is the 
lubrication limit. 

As 11 is reduced further, the flow eventually reaches the knee a t  D x 1. To the left 
of this knee forced convection is no longer important, and D depends linearly on IT 
because I x a l t .  This is the conduction limit. As in the lubrication limit, the L) 
increases with t ,  because making t larger makes the deformation layer narrower. 

Note that if P 5 1, the flow is always dominated by the viscosity contrast. For 
bhe flow to show essentia,lly isoviscous behaviour, P must be. large enough t,o choke 
the deformation layer. 

In  $ 2  we noted that for a given D the sphere adopts the faster of the two strategies 
available to  it. This is a useful result, and it is worth understanding its limi- 
tations. Table 1 shows t>hat, at) the transition from t'he lubrication mechanism t'o 
the Stokes mechanism, N z P. The ratio of the drag laws for the lubrication and 
Stokes mechanisms is of order cN3, and since the transition occurs for cN3 x 1 the 
sphere does indeed adopt the shrategy with the smaller drag. This can also be seen 
from figure 7 ,  for near the right knee the P ( D )  curve lies above its two asymptotes. 
Note that the converse is true a t  the left knee. 

This is not, too surprising. Remember that if the viscosity is a given function of 
position, the usual derivation of the minimum-dissipation principle holds. Table 1 
shows that the N(U)  relationship does not change at the right knee : the flow has no 
choice of viscosit>y profile there. The knee exist's only because it becomes relatively 
easy to deform the isoviscous fluid when D is large. The dissipation principle leads 
US t>o expect that,, if the choice of two strategies does not involve changing the viscosity 
profile, the flow will adopt the strategy with the smaller drag. This happens a t  the 
right knee. However, the left knee in the curve exists only because there is a change 
in the dominant mode of heat transfer; i t  has nothing to  do with the Navier-Stokes 
equations. There is no reason to expect the transition to  be governed by the 
minimum-dissipation principle, and it' is not. In  saying that the sphere adopts the 
fast'er of the two strategies available to i t ,  we refer only to the t'ransition from the 
lubrication to the Stokes mechanism. This result is used in $ 5 .  
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FIQURE 8. Temperature profile for the hot stagnation-point flow. The horizontal scale for the 
lubrication limit ( a )  is z ;  for the Stokes limit ( b )  i t  is z ( @ .  

Figure 5 shows the tangential velocity in these two extremes. I n  fact the tangential 
velocity profile qualitatively resembles that in figure 5 (a )  whenever A = eN3 4 al l ,  
even though the drag is qualitatively isoviscous for A 2 1 ; (2.5) and (2.6) make this 
clear for the case €2 = a. This is surprising at first sight, but i t  must be so because 
the drag is determined by the layer that  carries the most volume flux and not simply 
by the layer in which the velocity is greatest. 

Although the curves in figure 7 qualitatively resemble those for the Nusselt number 
of figure 6, there is one important difference. In  the graph for N, the right knee occurs 
for D z e d .  If e is very small, there is a substantial range, E-! 5 D 5 ec2, in which 
the drag is essentially isoviscous, but in which the heat losses are controlled by the 
ability of the deformation layer to bring cold fluid next to the hot plane. Of course 
the heat flux is much less in this transitional case that it is in the lubrication limit, 
because in the lubrication limit the jump in normal velocity is U ,  but in the 
transitional case it is much less than C7 (see ( 2 . 5 ) ) .  

This effect means that the N ( P )  curve has three knees. For this reason I have not 
emphasized the N ( P )  relationship by including a graph. I n  making this point, I am 
thinking of a recent experiment by Ribe (1982), which we discuss in 93.4. The 
essential point is that  only moderate values of t (less than 10) can be obtained 
experimentally. The knees in the N(P) curves are then separated by only a modest 
range of P, and it  will be much easier to pick the essential transitions out of the 
scatter of the experimental data if that  data is presented in the form shown in figures 6 
and 7 ; those curves have only two structures to be resolved. 

Table 1 also gives the asymptotic forms for the N(P) relationship. Numerical values 
for the N(P) relationship can be obtained by using figures 6 and 7 together. 

For completeness, figure 8 shows the temperature profile in the two extremes 
D 4 e-! and D + eP2. 

Consider two further practical points. First, in the limit t + co the adjustment layer 
is negligible. We need to know how large t should be for this to be true in practice. 
I estimated the value o f t  necessary by integrating the momentum equation (3.6) to 
give Go as a function of T. I n  the lubrication limit T - e P ,  and it is possible to 
estimate the contribution of each of the three layers to the integral that determines 
Go. Using rather conservative bounds I found that iff > 10 thc contribution from 
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the deformation layer dominates that from the adjustment layer. It would be helpful 
to have a numerical calculation for comparison. 

Secondly, i t  follows from (3.13) that  the dimensional thickness of the deformation 
layer is 1 

(3.25) 

Most of the applications involve replacing a viscosity profile of the form shown in 
figure 1 with the form v = Ae-yT. The entire asymptotic analysis shows the essential 
viscosity variations to occur within the deformation layer, so that the viscosity profile 
must be fitted accurately there. This can be done by taking 

d 
y = -In v(T,), 

dT, 
(3.26) 

where T, is the temperature a t  the hot surface. Since the dimensional boundary-layer 
thickness 

6’=- 

it  follows that 1/16’ + 0 if t = y AT + co ; the essential point is that the relevant value 
o f t  is based on the local value of y and the total temperature drop AT. For the 
asymptotic theory to be valid this value o f t  must be bigger than 10. 

It is important to recognize that there is in general no connection between the 
local value o f t  and vo/v,. Most of the fluids that experimentalists use to model 
variable-viscosity flows have the unfortunate property that vo/v, can be made very 
small by making AT large, while the local value of t rarely exceeds 5 or 6. This is 
not big enough; in the geophysical flow i t  is easy to have t 2 10 even if there is no 
partial melting of the rock surrounding the magma. This suggests that asymptotic 
analysis on numerical simulation is more likely to bring out the essential features of 
these flows than experiments are. 

So far we have concentrated on the essential case f l  = 0. The lower plane is rigid 
(f i = 0) in polymer moulding (Lee et al. 1982). In  addition, any experimental 
modelling of the magma problem will be done with rigid spheres, although the 
condition f: = 0 is most appropriate. Thus it is useful to point out the special effects 
due to the rigid surface, so that they do not confuse the issue. 

AT 
I T,(O)I ’ 

3.4. Behaviour when the lower plane is rigid, & = 0 
Consider the differences between this case and the previous one. The essential point 
is that if vo/v, is made very small, and then fixed, it is possible to make al l  so large 
that the external isoviscous flow sees the lower plane as rigid. If a l l  is fixed a t  this 
value and vo/v, is decreased, the first effect of the viscosity contrast will be to  
allow the external flow to slip past the rigid plane. This results in a Couette flow 
in the deformation layer, and the effect becomes important when the jump in tan- 
gential velocity across the Couette flow is comparable to TIT. This occurs when 
(al l )  (po/,u,) x 1. Thus if A % (a/Z)2 the drag is given by the isoviscous result for a 
rigid surface and the Nusselt number N a P6. But if A @ (a/1)2 the external flow sees 
the lower plane as stress-free, and our earlier discussion for the stress-free case holds 
qualitatively. There is a very slight numerical difference because of the different 
boundary condition on the flow in the deformation layer. 

Notice that for t 4 c 3  4 D the drag law is simply that for the Reynolds problem (see 
Batchelor 1967, p. 228). For sf 6 D -g t4eP3 the external flow sees the lower plane 
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Drag, D’ 

R4 
3rpo,t3u 

a 0 , < D < t  
(Conduction limit) 

1 < D < s-* 
(Lubrication limit) 

e-2 < D < t4s-3 

(Stokes limit) 

t4s-3 < D 

T 
i 

1 I 

I 
P 

i - e - p  

1 

TABLE 2. Asymptotic forms for the casef; = 0 (rigid lower plane) 

as traction-free, and the drag law is the same as that given in table 1 .  Finally, if 
1 4 D 4 e-t the deformation layer controls the drag; table 2 shows that if f h  = 0 then 
D’ is twice its value for a traction-free plane. 

When EP 4 D 4 t4eP3, the N(P) relationship is the same as i t  is for the case f 5 = 0, 
and i t  is in fact the same as that for the corresponding isoviscous problem. But if 
t 4 ~ - 3  4 D, table 2 shows that N K Pi when the lower plane is rigid. This is 
qualitatively the same as the result for the corresponding isoviscous problem. But 
even at these large values of a l l  the present result still contains the viscosity contrast. 
This is interesting, for it means that the fine details of our flow are always influenced 
by the viscosity contrast, even if the flow as a whole eventually manages to  imitate 
the gross properties of an isoviscous flow. 

Ribe (1  982) has recently made an interesting and very careful experimental study 
of the problem. He kept the temperature of a hot metal ball constant as i t  fell through 
cold golden syrup. Ribe plots both N and P as a function of D; he uses the viscosity 
contrast rather than t as the parameter. The transition from N cc Pi to  N K P! is 
particularly marked, but none of the other knees in the N(P) curve is resolved. I think 
that this is so in part because t was typically less than 5 or 6, and in part because 
Ribe presents data for many different viscosity contrasts on the same graph. If t = 5 ,  
E x 0.88, and the knees a t  D x 1 and D x E P  merge. If t were actually this small in 
the geophysical problem, the fine distinctions of the asymptotic theory would be a 
waste of time. I n  practice t > 10, so that E < 0.05 and knees are quite distinct (see 
figure 6). We return to this in $ 5 .  

Table 2 shows that the external flow begins to slip freely over the lower plane when 
D x t4eP3, so that N x et/ t .  This value of N is large when t is. For example, if t = 10, 
e t / f  x lo3; the boundary layer must be very thin to choke the deformation layer 
completely. 

So far we have neglected the complications introduced by the shape of the sphere 
in order to bring out the main changes that occur in the flow when D is varied with 
t $ 1. There is no simple exact solution for the sphere that is valid for all D. However, 
it is possible to find separate asymptotic solutions in the lubrication limit and in 
the Stokes limit. We give the solution in the first case. 
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4. The hot sphere for arbitrary P in the lubrication limit dD -+ 0 

This analysis corresponds to  studying the left and middle legs in figures 6 and 7. 
In  additsion we estimate the location of the right knee in the drag law by using the 
fact that the sphere adopts the faster of the two mechanisms available to it. 

As before we give an asympt'otic solution for t>he profile 11 = A p - Y T  and t -+ 00. 

Consider the steady creeping flow shown in figure 9. The tangential component of 
stress vanishes on the surface of the sphere. For large t t'he width 1 of the deformation 
layer is small compared with the thermal lengbhscale 6. We shall find both the heat' 
flux out of, and the drag on, the sphere to be determined by those parts of the flow 
for which 6 5 a. Hence E < a ,  so that within the deformation layer we can neglect 
both the effects of curvature and the streamwise diffusion of momentum. 

Let a circurnfl@x denote those dimensionless quantities that are O(1) within the 
deformahion layer, and let a tilde denote those that) are O( 1) over distances of order a. 

Prom now on we shall delete the circumflexes from dimensionless quantities, but 
will retain the tilde. On letting l,/a -+ 0 with Y fixed, the dimensionless governing 

du, 1 a equations become 
-+7- (ue sin 8) = 0, 
iir slnBd8 

iir 
(4.3), (4.3) 

(4.4), (4.5) 

once again the temperature gradient is constant within the deformation layer. These 
arc to be integrated subject to the conditions that T = 0 = u, = i )ug/ i i r  on r = 0, and 
that uH + 0 and u, -+ - COH 6' as r + CC. Note that uH + 0 as r -+ co because the 
tangential velocity is of order (a/Z)li within the deformastion layer, whereas it is 
only of order (-1 in thc external flow. 

From equation (4.5) it follows that 

7' = rK(B),  (4.6) 
where the arbitrary function R(8) is fixed by requiring that (4.6) match to  the solution 
of the external energy equation. Thus ,u = e T K ( @ .  Now the expressions 

sabisfy the equat'ion of continuity (4.1) exactly. Let 5 = rK(0 ) .  The moment'um 
equat'ion (4.3) then admits a similarity solution of the form 

$ = if(<) sin2 8, 
where thc velocity profile 

f ' = + ( l + { ) e - l ,  f =  1-(1++5)e-C, 

- -  ap - and the prcssure gradicmt 
so - .+K3(8)  sin 8. 
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I 
E'IG~JRE 9. Plow past a hot sphere in the lubrication limit. 

The velocity profile (4.8) is necessarily the same as that for the stagnation-point flow 
(see figure 5 b ) .  The dimensional thickness of the deformation layer is Zo/K(0). K ( 0 )  
is determined by solving the energy equation in the uniform external flow. 

We have 
- (4.10) 

This is the Oseen equation. I ts  general solution is given by lllingworth (1963, p. 
192), but we consider only the extreme cases P +  0 and P- t  00. I n  each case the 
solution can be obtained by approximating (4.10) directly. 

If P + 0, the solution is T = l /F .  Matching this to the temperature field within the 
deformation layer shows that K(0)  = &,&/a, so that the dimensional thickness of the 
deformation layer is a l t ;  it is independent of 0 because the heat is transferred by 
conduction alone. 

Given K ( 0 )  we can find the drag due to both hemispheres. It is 

D' N $T/,L" unt3, P + 0. (4.11) 

This is about five times the corresponding result (with R = a)  in table 1. 
It is interesting to compare this with the drag given by Stokes' law for flow past 

a traction-free sphere, namely 47rp,aCr. The ratio of the two is &t3ePt. If t = 10 this 
is 2.0 x lop3: lubrication is cost-effective. This also gives an interpretation of the 
parameter e. 

If P $=- 1 but the external fluid is still rigid, the isotherm T = T, -7-l separates from 
the sphere at the equator, as shown in figure 9, and closes on itself only far behind 
the sphere. The sketch shows that behind the sphere the width of the deformation 
layer is comparable to the radius a. Hence the tangential velocity within i t  is 
comparable to U ,  and i t  follows that the contribution of the lower hemisphere to the 
drag is far less than that of the upper hemisphere. Similarly, the heat flux out of the 
sphere is also controlled by the upper hemisphere. 

Let r" = 1 +r , /P ,  so that r2 is of order unity within the thermal boundary layer. 

3~ a2T 
Then, in the limit P+ 00, 

-cos0- = ~ 

ar, ari ' (4.12) 
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Hence T’ = exp { -  (P- i )P  cos 81, (4.13) 

so that 
1, Ut 

K(0)  = - cos 8. 
K 

The drag on the forward hemisphere is 

na4p0 u4 
D’ - t 3 ,  P +  co 

4 8 ~ ~  

(4.14) 

(4.15) 

The transition from (4.11) to (4.15) occurs for P x 1 and corresponds to the lowest 
knee in figure 7 .  We can estimate the location of the second knee in the following 
way. The ratio of (4.15) to the drag given by Stokes law is&eP3, where e = t3((vo/voo) ,  
as in $3. Provided that P 6 (192/e)$ the drag D is smaller than that given by Stokes 
law, but for P 2 (192/e)! the sphere can move most quickly by deforming the external 
fluid. If t = 10, (192/e): = 35. Thus there is a substantial range of P, 1 < P < 35, in 
which the drag is given by (4.15). I n  practice, the critical PBclet number will be 
slightly less than this, for even in the Stokes limit the drag on the sphere will be a 
little less than that for the corresponding isoviscous flow. 

According to (4.15) the drag is only one-third of the estimate given by the 
stagnation-point flow (with R = a) .  This must be the case because the width of the 
layer increases with 8. 

The average Nusselt number based on the forward hemisphere is 

N - ’ P  2 , P + m .  (4.16) 

The thermal-boundary-layer thickness 

and becomes infinite as 8+&n. The singularity occurs because the radial velocity 
changes sign a t  the equator, so that the thermal boundary layer is maintained there 
by the tangential advection of heat. Balancing tangential advection against radial 
diffusion shows that S/a x Pi, I&r-81 < P4. Behind the sphere this result also 
breaks down and S becomes comparable to  a (see figure 9). Thus the correction to 
(4.16) due to the equator and rear hemisphere is only of order unity. 

The isotherms are closed by diffusion far behind the sphere. Notice how different 
this is from the case in which the thermal layer is controlled by the isoviscous flow : 
in that case S/a 4 1 everywhere except a t  the trailing stagnation point. 

5. Application to the geophysical problem 
5.1. Terminal speed 

Suppose now that the sphere is less dense than the surrounding fluid by a fixed amount 
Ap.  The terminal speed U follows by setting the dimensional drag D‘ equal to the 
total buoyancy $na3gAp of the sphere. Let 9’ = g(Ap /p , ) .  Then the results in 94 give 
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For other values of A the terminal speed can be estimated from figure 7 by setting 

64 g’a3 D’ = jna3gAp; that  is 
D = - - t - 3  (5 .2)  

3 V O K  . 

There are two interesting aspects to the second form of (5.1). First, the terminal 
speed depends only weakly on the poorly known quantities a and vo.  Secondly, IT 
decreases as the radius a increases : notice that this is not true in the conduction limit. 
To see why this occurs, note that for the sphere to advance through a distance a it 
must push a volume nu3 of fluid through the deformation layer. In  the conduction 
limit, the width of this layer is proportional to a ,  but in the limit P -P 00 it depends 
only weakly on a 1 - -(*) 1 Ul’ K : t-a. 

22/2  (5.3) 

This effect means that when P 9 1 the drag increases more rapidly with a than the 
total buoyancy does (see (4.15)), and the terminal speed therefore decreases as a 
increases. 

The geophysical values of a, vo and t are uncertain, but a t  least a t  high PBclet 
numbers the results for U and 1 do not depend strongly on them. Marsh (1978) uses 
a = 1 km, based partly on the size of plutons exposed a t  the Earth’s surface and partly 
on estimates of the total volume of magma that makes up an island-arc volcano. Next, 
the viscosity of the country rock near its solidus is poorly known, but is unlikely to 
be less than 1016 om2 s-l. Lastly, one estimate for t can be got by using the results 
of Ashby & Verrall (1978) for olivine; this estimate is a low one because Ashby & 
Verall’s work is for solid-state creep and therefore does not include the possibility 
of partial melting. This gives t x 10 (see $ 1 ) .  Other estimates for t follow from the 
measurements by Sakuma (1953) on the viscosity of lava in its melting range. I 
estimated that immediately above the solidus y x 2.5 x lop2 K-l and that in the 
middle of the melting range y x 4 x 10-’Ii-’. If AT = 500 K this gives t x 12 and 
t x 200 respectively. The larger value is not likely to be relevant. 

Thus we can get a rough idea of the speed of ascent by supposing that t = 20, 
g‘ = 300 em/?, K = lop2 cm2/s, a = lo5 cm and vo = 1016 cm2/s. Then IT x 3 x 

cm/s, 6 x 400 m, 1 x 20 m and A x 0-1 if vm = loz2 cmz/s. This estimate for IT 
is quite sturdy, as we shall now see. 

In  practice, the magma probably begins its ascent a t  the same temperature as the 
surrounding fluid. The driving stress is of order agAp, and is large enough for the 
surrounding rock to deform as a power-law fluid rather than as a Newtonian one. 
As the sphere rises through the geothermal boundary layer, its surroundings become 
colder and stiffer. Thus, if the sphere ascends at constant temperature ‘I;. it  
eventually reaches a level a t  which the effective viscosity contrast is large enough 
for the lubrication mechanism to give a faster terminal speed than the Stokes 
mechanism (Morris 1980). The analysis in 93 shows that the sphere adopts the faster 
of the two strategies. This should also be true for a power-law fluid. Therefore we 
can estimate the depth of transition by first calculating a terminal velocity for a 
sphere that rises through a power-law fluid without heating it,  and then comparing 
that velocity with the terminal velocity of a sphere rising by the softening mechanism. 
Table 3 shows the bounds on the terminal velocity for the isothermal problem; I 
calculated them using the upper and lower bounds on the drag given by Wasserman 
& Slattery (1964) and assuming that a = 5 km with a chemically imposed density 
difference A p  = 0.6 g cmP3. 

Table 4 shows the terminal velocity for a sphere ascending by the softening 
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Depth (km) pm (kbar) T, ( K )  [Lax (cm s-l) Zkin (cm s-l) 

20 5 500 10-39 10-39 

50 16 1300 2 x 1 0 - 7  1 x 10-8 
100 32 1600 5 x 10-4 2 x 10-5 

TABLE 3. Stokes limit in a power-law fluid 

Dppth (km) 3t P I7 (em 8-l) 1 (m) 
20 23.9 16.8 3 x 10-7 10 
50 10.1 206 4 x 10-7 20 

100 5 4  31.5 6 x lo-? 30 

TABLE 4. The lubrication limit in a power-law fluid; To = 1900 K 

mechanism. The appendix gives the drag law in this case. The drag law is valid when 
3t % 1. As in table 3, a = 5 km and Ap = 0.6 g emp3. 

used in table 4 is high. This compensates for the fact  that, the 
constitutive relationship does not include the effects of partial melting. If T, = 1400 K 
and there is no p r t i a l  melting, then U = 2 x lo-' cm s-' a t  20 km. 

Comparing the tables makes i t  clear that, if a = 5 km, the ascent begins by the first, 
essentially isothermal, mechanism. The transition to the lubrication limit occurs a t  
about 50 km, and the terminal speed in the lubrication limit is (once again) about, 
lo-' em s-l. This makes the response time for the island arc about lo6 years. 

The details in the appendix show that the terminal speeds in table 4 depend only 
weakly on a ,  whereas those in table 3 depend on the fourth power of a. This means 
that for smaller spheres the transition occurs much deeper in the earth. 

The valuc of 

5.2. Energy constraints 

If the softening mechanism applies, the response time for the island arc meets the 
geological constraint ; to that  extent Marsh's suggestion works. Now we must consider 
the price of success. The essential point is that for the sphere to advance through 
one of it's own radii by the softening mechanism, i t  must soften a volume 7ra3 of 
country rock. Since the specific heat of the magma is comparable to that of its 
surroundings, an isolated sphere (with no internal heat) source) would be in rough 
thermal equilibrium with its surroundings as it rose, and would solidify. We can 
quantify this effect. I n  this section t is time. Initially suppose that) T, is constant. 

Let the subscript p refer to the hot parcel, and let' the subscript a refer to the 
ambient fluid. Then the total heat flux out of the sphere is (pCp),KL\T4naN, where 
N is the average Nusselt number and C, is the specific heat a t  constant pressure. An 
energy balance applied to the sphere then gives 

dT 1 
-+-(T-T,) = 0, 
at 7 

15.5) 

where the cooling time r is given by 
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Note that a/ U is the time taken by the sphere to travel through one of its own radii. 
The quantity PIN can be estimated from the results for the squeezing flow (table 
1); i t  increases steadily as the driving force D (and hence P)  increases. Intuition tells 
us that if P --+ 0 the body loses heat quickly by conduction but travels only slowly. 
Indeed, (5 .6)  says that Ur/a --+ 0 in the conduction limit. Next, in the lubrication limit 
PIN + 1, and the sphere cools substantially by the time it has travelled through one 
of its own radii. Lastly, if P+ 00 conductive losses ought to be very small and the 
body should ascend nearly adiabatically. Note that in this limit the viscosity 
variations affect neither the drag nor the heat flux. Table 1 shows that in the Stokes 
limit PIN z Pi. Since P 9 1 whenever the Stokes limit applies, the sphere travels 
through many of its own radii before cooling to the temperature T, of its surroundings. 
We should expect this. When the lubrication mechanism applies, the body moves by 
softening the column ahead of i t ;  but, when the Stokes mechanism applies, the body 
shoulders the fluid aside and does not heat it as effectively. 

It is essential to recognize that whilst the lubrication mechanism results in fairly 
large P6clet numbers (table a),  it does so only by thermally mixing the body with 
its surroundings. Sometimes it is suggested that large viscosity variations allow hot 
material to  ascend nearly adiabatically, but this idea is simply not borne out by the 
calculations. 

To emphasize this point, consider a hot sphere rising steadily through the 
geothermal boundary layer. It sees T, varying in time. Suppose for example that 
the geotherm is exponential : 

T,(z) - T, = (T,  - T,) e P I L ,  

where T, is the temperature a t  the heart of the mantle, T, is the temperature a t  the 
Earth's surface ( z  = 0), and L is the thickness of the geothermal boundary layer. Then 
the solution of (5 .5)  is 

- 1  

T(0)  - T ,  (0)  - (1 + - ) (T, - 5';)] e-t/r I h  

Let (pC,),/(pC,), = 1, let T, - T, = 1400 I(, and suppose that the lubrication 
mechanism begins to work a t  t = 0 when T - T ,  = 500 K. In the lubrication limit 
(4.16) gives N = +P, so that &/a = $ and L/Ur  = 3L/2a. Let L = 30 km. It follows 
that when t = 2a/U (so that the body has travelled through one of its own diameters) 
the first term in (5.7) is about 18 K if a = 5 km, and 25 K ifa = 1 km. The second term 
is biggest a t  the Earth's surface, where Tm-5'&(t) = 1400 K in this example; the 
second term is 140 K if a = 5 km, and about 30 K if a = 1 km. It follows that, if the 
isolated sphere is small enough to see T, varying only over a time much longer than 
7 ,  then the rising sphere is in thermal equilibrium with its surroundings. 

This is a nuisance for an individual parcel, as it quickly solidifies. Yet for the diapir 
as a whole, i t  is a very effective method of softening and removing the highly viscous 
country rock. A second parcel, following before the thermal anomaly due to the first 
has diffused, rises through low-viscosity fluid until it  reaches the cold leading edge 
of the diapir. There it begins to  penetrate cold fresh rock by the softening mechanism. 
It soon dumps all its heat into the leading edge of the diapir, and equilibrates with 
the cold rock ahead of it. The process repeats itself. It provides an effective 
mechanism for getting heat from the source region into the pathway, where i t  is 



24 8. Morris 

needed. Given a rapid supply of spheres, the leading edge of the diapir propagates 
through the lithosphere a t  a speed of order cm s-l. I n  contrast, an individual 
sphere following the Stokes mechanism could travel much farther before solidifying, 
but an enormous stress would be necessary to drive it a t  this speed. Marsh (1982) 
describes some additional features of the process. 

To open a passage to the Earth’s surface by the softening mechanism a column 
of cross-sectional area ma2 must be softened. If the mechanism is to  apply over a depth 
D ,  the smallest amount of energy necessary is 

where Tp is the temperature of the parcel a t  depth z. If the geotherm is exponential 
with a boundary-layer thickness of 30 km, and Tp is 1500 H, than the amount of 
energy needed is about loz7 erg if a is 1 km. This is not a trivial amount of energy. 
For example a sphere of rock with radius 1 km releases about loz6 erg if it cools 
through 1000 H. About ten of these spheres would be necessary. Even if we allow 
for the release of gravitational potential energy this qualitative picture does not 
change. Thus, many spheres must follow the same path before one can reach the 
surface. 

I think that further numerical work for it single sphere will not change the picture 
drawnin $ 3. It would be helpful to have a more accurate study of the flow in a power-law 
fluid, but above all a numerical study of the interaction of successive parcels would 
be useful. It would be enough to make a model with two finite viscosities; one to 
represent the magma and the other to represent the deformation layer. 

There is a final point. The processes we have discussed are incompressible; the 
magma advances by softening the material in front of it,  and then exchanging 
positions with it. Under some conditions, magma can be transported by fracturing 
the rock through which i t  passes. If the stresses associated with plate tectonics are 
such as to open cracks in the country rock, then this is a plausible mechanism. But 
an island arc must be under compression because the oceanic plate is being pushed 
against it. This suggests that  a fracture can only exist if the magma has enough 
potential energy either to lift aside the material that  is in its way, or else to push 
i t  aside by compressing it.  The second mechanism is implausible because the bulk 
modulus of rock is very large, and the first mechanism can apply only near the Earth’s 
surface. It would be interesting to study the energetics of these two processes, taking 
into account the compressibility of the magma. 

6.  Summary 
We considered the problem of finding the response time for a island arc; that is 

the time needed to  open a fresh pathway from the magma source to the volcano. We 
studied a softening model due to Marsh (1978) in detail. The simple model of squeezing 
flow between parallel planes ($3) captures the essential fluid dynamics, and we gave 
a detailed discussion of i t  for a Newtonian fluid of strongly temperature-dependent 
viscosity. We stressed two facts. First, when the €’&let number is large, the problem 
has two large parameters, namely P and yAT.  Depending on the relationship between 
them, the flow can either be qualitatively isoviscous, or dominated by the viscosity 
contrast. Secondly, when modelling the geophysical flow experimentally, it  is not 
enough to make the viscosity ratio p.,/,u,, large. Rather, the value o f t  at the hot 
surface must be large. In  $5 we extended the discussion to the more realistic case 
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of a power-law fluid, and applied it to the geophysical problem. We found the 
softening mechanism to give a response time of less than a million years, a t  a cost 
of somewhat greater than lo2’ erg. During the first 50 km the magma follows a 
qualitatively isoviscous mechanism ; but in the remaining 50 km i t  follows Marsh’s 
advice and ascends by lowering the viscosity of the country rock. 

This work contains the essential results in chapter 2 of Morris (1980). I would like 
to thank B. D. Marsh and 0. M. Phillips for getting me started; G. M. Corcos, 
P. J. Yagni and two referees for stopping me; and N. Ribe for a preprint of his 
experimental study. 

During the preparation of this paper 1 have been supported by an NSF Grant, 
CME-8012678. Part of the work was supported by NSF Grant EAR-8005109 (Marsh). 

Appendix. Solution for a power-law fluid 
In  a power-law fluid, the shear stress u and strain rate 12 are related by u = min. 

This applies to rock at moderately high temperatures and deviatoric stresses (see 
Ashby & Verrall 1978). For olivine, Ashby & Verrall give n % 3 and 

kTG2 Q + p V ,  
exp ~ 

RT ’ [ N T ) I ~  = bA, 

here Boltzmann’s constant lc = 1.38 x l O W 3  J K-l, the rigidity G = 8.13 x N rn+, 
the Burger’s vector b = 6 0  x loplo m, A,  = 045, R = 8314 J K-l mol-’, the activa- 
tion energy Q = 522 kJ mol-’ and the activation volume V = 1.1 x m3 mol-’ 
(Stocker & Ashby 1973). 

Repeating the analysis of $4 for this case gives the drag law 
2n+1 

D’ - K,na3G,m(T,) tZn+l (3 (&Ua)n (PI 3t -+ 00). 

(&n+&)!n! Here 

1 K n =  2($(n + 1 ) )  ! ’ 

For n = 5 the terminal speed is 

and all  = 3Pt. 

X is a numerical coefficient of order unity; for a solid sphere Wasserman & Slattery 
(1964) give 0.53 < X < 1.62. No bounds have been published for a traction-free 
sphere, but Nakano & Tien (1968) have calculated an approximate value of X that  
lies between the bounds for a solid sphere given by Wasserman & Slattery. 
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